Theory and Simulation Issues and Challenges

Peter J. Catto (with lots of help)

Representing
Theory Coordinating Committee
& Theory Program

March 14, 2007

Motivation: Changing Role of Theory

- The role of basic plasma theory has changed
 - Also need to insure the proper physics is in simulations to make them predictive
- Traditional role
 - Directly interpret experiments but in improved operating regimes
 - Continue striving for a deeper understanding
- Descriptions must be valid for longer times
 - MHD time scales no longer adequate
 - Drift time scales becoming inadequate
 - Ultimately need to simulate on transport time scales
- Added role: Basic theory needed to build predictive simulations on transport time scales

Overview

- Theory status and long range goals
 - Focus on simulations and physics improvements
 - Physics issues to be addressed and ultimate goals
 - Mix in basic theory applications to experiments
- Simulation examples can't cover all theory!
 - Extended MHD or 2 Fluid
 - RF/CD and Integration
 - Gyrokinetics (including edge)
- Purple text denotes basic plasma theory input needed to deal with an issue
- Concluding remarks

Extended MHD (X-MHD) or 2 Fluid

NIMROD and M3D intended to handle

- reconnection (sawteeth) and resistive effects
- ballooning and peeling (ELMs)
- disruptions
- neoclassical tearing modes (NTMs)

• MHD Problem: ultraviolet catastrophe

- growth rate increases with n = mode number but codes
 retain a finite number of n
- using phenomenological/hyper diffusivities/resistivities
- Basic plasma physics solution
 - add diamagnetic (or FLR) effects

ELM Milestone: NIMROD Linear Results

Linear spectra

0.25 0.2 0.15 -0.05 -0.05 0 10 20 30 40

2 fluid stabilization of high n modes

Linear eigenfunctions

2 fluid eigenfunctions: localized and sheared

(using same radial diffusivities)

ELM Milestone: Nonlinear Results

2 fluid gives helically localized mode about q = 3surface, while MHD has fingers

2 Fluid: helical, localized

MHD: plasma fingers

Broad range of unstable modes and heat with nearest neighbor coupling balance

models

Fingers broken-up by shear in toroidal flow

Entering a New Era: Diamagnetic Effects

- Diamagnetic effects are larger than radial transport (also needed) and enter via
 - diamagnetic heat flux
 - gyroviscosity
 - results must be insensitive to phenomenology
- Future extensions needed
 - full drift gyroviscosity instead of Braginskii
 - perpendicular and parallel viscosities
 - f from drift kinetic equation for closure: a biggie!
 (consistent theory descriptions need to be developed)
 - improved separatrix?
- Verification possible in some limits
 - short mean free path limit
 - isothermal limit a useful test

Isothermal Tokamak Operation

Steady state isothermal tokamak

- rigidly toroidally rotating Maxwellians for arbitrary collisionality
- density profile exponential and electrostatic potential linear in poloidal flux
- stress = Reynold's stress MnVV + scalar pressure p
 (gyro, parallel & perpendicular viscosities vanish)

Complications due to

- temperature variation
- waves: time variation & departures from axisymmetry
- zonal flow: time varying axisymmetric, driven by waves

Other X-MHD Results Include:

- Braginskii gyroviscosity tests:
 - verified against gravitational mode theory
 - verified theory of magnetothermal instability
 - 2D GEM reconnection modified*
- Gyroviscous cancellation: often too crude!

Some MHD Results

- Resistive MHD sawtooth simulations
 - NIMROD & M3D comparisons underway*
- Gas jet disruption mitigation on C-Mod
- Poloidal flux amplification in SSPX

Current Density Contours for GEM* Nonlinear Benchmark

- Non-linear reconnection benchmark:
 3 codes using full 2-fluid model
- Current density (out of page) for t > 20 collapses due to 2-fluid effects
- Extending to strong guide field for collisionless tokamak reconnection

Flux Surfaces at 2nd Sawtooth Crash

X-MHD: Challenges

- Determine the nonlinear behavior of ELMs
 - Fingers vs. helix or something else?
- Resolve sawtooth modeling issues
 - Numerics and/or energy balance? Diamagnetics?
- Kinetic suppression of resistive wall mode
- Complete diamagnetic treatment for drift ordering
 - Drift form of gyroviscosity
 - Physical viscosities, resistivities & diffusivities
 - Arbtrary collisionality requires an f
- Couple to a drift kinetic equation to get f
 - Non-trivial, long term and hard!
 - Desire simpliest self-consistent model

RF/CD and Integration

- Wave propagation physics: full wave codes
 - TORIC: faster, but gyroradius < wavelength
 - AORSA: slower, but gyroradius ∼ wavelength
- Fokker-Planck + quasilinear kinetic codes
 - CQL3D: 2 velocity + radial (transit averaged)
 - ORBIT-RF: finite radial orbit effects
- Coupled
 - kinetic code provides f for full wave code dielectric
 - full wave code provides fields for quasilinear operator
- Quasilinear validity
- Nonlinear effects in sheaths

AORSA+CQL3D: power deposition contours exhibit asymmetry needed to reproduce energetic ion tail measurements during minority heating on C-Mod

Reproduces fast ion tail evolution

Quasilinear Validity for ICRH

ORBIT-RF shows large RF electric field destroys superadiabaticity by introducing phase stochasticity

Low fields: waves & particles locked, energy kicks reinforced

High fields: phase coherence and adiabaticity destroyed in a time step

C-Mod minority heating case:

$$P_{RF} = 0.6 MW$$

$$E_{RF} \approx 1 \text{ kV/m}$$

 ε = 0.428 (mapping parameter) (stochastic threshold ε = 0.25)

AORSA: FWCD field and power absorption in ITER equatorial plane

(phasing = $-\pi/2$ and 169 toroidal modes for finite antenna)

ICRF Antenna Modeling: TOPICA – TORIC Integration

• TOPICA:

- 3D antenna (includes Faraday shield, box,...)
- parallel version to model ITER ICRF antenna

• TORIC:

- TOPICA provides fields as a boundary condition for TORIC
- TORIC provides plasma response including effects antenna curvature

Alcator C-Mod: E antenna

Nonlinear RF Sheath Physics: modifies TOPICA fields used in TORIC

- Parasitic effects from antenna and wall sheaths dissipate power by accelerating ions into metal (heating efficiency can drop by 50% or more)
- RF fields from TOPICA must be modified
- Sheath losses are sensitive to geometry

Future applications

- Integrated RF- turbulent transport in SOL
- ITER antenna scenario optimization
- heating efficiency

RF/CD Simulations Building on Past Success

- Full wave and FP+QL codes being integrated
 - CQL3D & ORBIT-RF provide f to TORIC & AORSA
 - TORIC will provide fields to CQL3D & ORBIT-RF
 - coming soon: first LHCD results from integrated full wave plus FP+QL model with a non-Maxwellian f
- Antenna modeling being improved
 - realistic antenna fields from TOPICA for TORIC
 - simulations of nonlinear sheath dissipation begun
- Integration of TSC and TRANSP
 - TSC is free boundary code with 1.5D transport
 - TRANSP provides its sources (heating, CD, NBI)

RF/CD Integration: Challenges

- Improve treatment of up-down asymmetries
 - asymmetric part of f can matter
- Improving and developing nonlinear features
 - sheath effects
 - stochastic thresholds for various waves
 - wave-particle perturbed orbit interactions
 - parametric instabilities & pondermotive effects
- Integrate X-MHD, full wave & FP+QL to treat NTMs: many year project!!!
 - heating & currents from full wave in X-MHD
 - same f for X-MHD and full waves
 - an f from a full drift kinetic equation with FP+QL
 (coupling of full wave and FP+QL is a start)

Gyrokinetics + Edge

- Core turbulence modeling
 - electron temperature gradient (ETG) comparisons
 - trapped electron mode (TEM) results from GS2
 - recent results from GYRO on ion temperature gradient (ITG), TEM and ETG
 - new GTC results indicating ITG dominates in DIII-D, while neoclassical dominates in NSTX
- Turbulence modeling on the transport time scale
 - gyrokinetic and Poisson equation
- Edge turbulence and divertor physics
 - a start on the pedestal and SOL
 - divertor biasing experiments (not GKs)

ETG Simulations: convergence tests and code benchmarking put on firm foundation

• Convergence tests:

- excellent convergence in time, velocity space & grid spacing
- kinetic ions retained

• Code benchmarking:

- excellent agreement
 between 3 continuum
 codes (GYRO, GS2,
 GENE) & 1 PIC code
 (PG3EQ)
- working on another PIC code

• Find:

- adiabatic ions fail in high χ_e , high shear regime
- transport χ_e < 15(ρ_e / L_T) ρ_e v_{te} is experimentally relevant

New Collisional Effects on TEM Turbulence: Linear and Nonlinear

Nonlinear upshift of TEM critical density gradient increases with collisionality

GYRO: Coupled ITG/TEM+ETG Transport

- Adiabatic ions for ETG inadequate
 - transport sometimes unbounded
 - problem cured using full ion response
- ITG transport insensitive to ETG
 - ETG secondaries do not affect ITG/TEM

Zonal flow residual: charge step response

- BUT increased ITG drive can reduce ETG transport
 - split between linear & nonlinear effects unclear
 - ITG/TEM secondary instabilities impact ETG?
 - zonal flow generated by ITG/TEM controlling ETG level?
- What fraction of χ_e is associated with ETG?
 - only 10% to 20% in the absence of ExB shear
 - up to 100% if ITG/TEM drive is quenched by ExB shear

TGLF: a more accurate transport model for integrated modeling

GLF23: predicts tokamak core temperature profiles

- TGLF (Trapped Gyro-Landau Fluid): a new transport model using same methodology as GLF23
 - improves trapped particle treatment compared to GLF23
 - also improves EM, collisional and geometric treatments
- TGLF: quasilinear transport model better fit to nonlinear gyrokinetic turbulence simulations than GLF23
- TGLF: linear stability features used for fast analysis of experiments
 - growth rates agree with gyrokinetic linear stability codes
 - 100X faster for linear stability analysis of experiments

Practical Gyrokinetic Simulations of Core Turbulence on Transport Time Scales

- Is there a <u>implementable</u> way to improve the gyrokinetic equation?
 - GKs arbitrary $k_1\rho$ but not arbitrary ρ/L
 - Is a more accurate f needed to evaluate the axisymmetric radial electric field?
 - Does gyroviscosity need to be retained?
- Is a Poisson equation description adequate?
 - Is it giving correct axisymmetric radial electric field?
 - Do non-slab magnetic field features matter?
 - Replace by implementable toroidal momentum conservation?
- Isothermal plasma limit
 - Do simulations recover a rigidly toroidally rotating Maxwellian as one possible solution?

First Kinetic Solution of Quiescent Edge Plasma from XGC

- Edge plasma differs from core: boundary interactions
 - scrape-off layer
 - wall interaction
 - ion orbit loss (X-point)
 - steep pedestal gradient (~ ρ_{pol})
 - non-Maxwellian ions
 - neutrals
- Kinetic simulations necessary
- EM turbulence & M3D/NIMROD coupling: capability being added

Electric potential of XGC strongly ExB sheared: positive in SOL, negative in pedestal, as in experiments

Theory of Induced Toroidal Asymmetries in Divertor Legs: confirmed on MAST

- Objective: broaden divertor heat flux
- Approach: asymmetric biasing of divertor
- Theory: retains sheath boundary conditions & X-point shear
- Theory & MAST agree on many biasing effects
- Similar experiments planned on NSTX
- More reactor friendly approaches (a) & (d) should also be effective
- Other topics: multiple X-points & SOL flows

Gyrokinetics: Challenges

- Improved understanding of ETG
 - What controls the turbulence level?
 - Role of zonal flow on ETG?
- Core turbulence on transport time scales
 - Is there a practical improvement to gyrokinetics?
 - How is the radial electric field determined?
- Edge gyrokinetics: 2 gyrokinetic edge projects
 - Non-Maxwellian gyrokinetics?
 - Treatment of collisions and collisional transport?
 - Isothermal limit recovered? C-Mod SOL flows?
 - Pedestal + separatrix + SOL, neutrals, wall

Theory: Lots of Bang for the Buck!

- ~ \$30M/year
- Advanced computing/SciDAC budget (OFES)
 - FY06 (actual): \$5,500K
 - FY07 (request): \$6,970K
 - FY08 (request): \$7,140K
- Basic theory and simulation
 - FY06 (actual): \$24,900K
 - FY07 (request): \$23,900K
 - FY08 (request): \$24,552K
- Maintain a balance between simulations and basic theory - resist robbing Peter to pay Paul
- Avoid "eating our young" by making room for our best and brightest young theorists

A Strong Basic Theory Effort Provides

- Best possible physics support of experiments
 - deeper understanding of theory leads to new ideas and discards bad ideas
 - suggests fresh ways of understanding results
- Highest quality physics to incorporate in predictive simulations
 - desire codes that simulate multiple machines
 - want to go beyond fudge factors or phenomenology
 - ultimately need to model on transport time scales
- Training in basic theory and simulations
 - next generation of theorists must understand what is or needs to be in the simulations they run or build

Issue: Student Training

Different with SciDACs/FSPs

- PhD commitment is 5-6 years
- SciDAC/FSP lasts 3-5 years
- Risk: accept a student in hopes of getting \$, or win \$ then find a student who may not have time to finish
- If a exceptional student appears after 2 years do you accept him or her?
- Training normally best for theory simulators; often more compatible with a national laboratory setting

Basic theory support of students

- Focus is on a deeper understanding of basic plasma theory rather than computational physics
- More compatible with university setting
- Balance needs of basic theory and simulation

Issue: SciDAC/FSP

• SciDACs/FSPs

- Good: \$ & 3-5 years enough time to do something,
 partnering with computer science & applied math
- Bad: scientists supported by multiple sources, continuity, more meetings & conference calls
- Ugly: student training
- Awkward: proposal writing & reviewing, managing
- Can we enhance the strengths of these programs and maintain a balance with basic theory?

Final Thoughts

- What we have learned recently is impressive
 - Simulations have made much of this possible
 - But much more basic theory needs to be done to insure predictability
 - Plasma simulators and theorists must work together to reach this goal
- Key challenges for theorists & simulators
 - Coupling a drift kinetic code to X-MHD (closure issues) and RF/CD simulations
 - Gyrokinetic turbulence on transport time scale and evaluating and understanding the electric field
 - Turbulence simulations in the pedestal and SOL

Predictive Code Development is a Partnership